首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Soil Properties and Biomass Attributes in a Former Gravel Mine Area after Two Decades of Forest Restoration
  • 本地全文:下载
  • 作者:Frederick Gyasi Damptey ; Klaus Birkhofer ; Paul Kofi Nsiah
  • 期刊名称:Land
  • 印刷版ISSN:2073-445X
  • 出版年度:2020
  • 卷号:9
  • 期号:209
  • 页码:209
  • DOI:10.3390/land9060209
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The ongoing global deforestation resulting from anthropogenic activities such as unsustainable agriculture and surface mining threatens biodiversity and decreases both soil carbon and above-ground biomass stocks. In this study, we assessed soil properties and below- and above-ground biomass attributes in a restored former gravel mine area in Ghana two decades after active restoration with potted plants and fresh topsoil. We compared conditions to four alternative land-use types (unrestored abandoned gravel mine, arable land, semi-natural forest, and natural forest) representing pre- and post-disturbance as well as natural reference states. We hypothesized that soil properties and related levels of below- and above-ground biomass in the restored area share similarities with the natural reference systems and thereby are indicative of a trajectory towards successful restoration. Eight replicated subareas in each land-use type were assessed for a set of soil parameters as well as below- and above-ground biomass attributes. The soil properties characteristic for the restored area differed significantly from pre-restoration stages, such as the abandoned gravel site, but did not differ significantly from properties in the natural forest (except for bulk density and base saturation). Above-ground biomass was lower in the restored area in comparison to the reference natural forests, while differences were not significant for below-ground biomass. Silt and effective cation exchange capacity were closely related to above-ground biomass, while below-ground biomass was related to soil organic carbon, bulk density, and potassium concentration in soils. Our results suggest that major steps towards successful restoration can be accomplished within a relatively short period, without the wholesale application of topsoil. Improving soil conditions is a vital tool for the successful development of extensive vegetation cover after surface mining, which also affects carbon sequestration by both above- and below-ground biomass. We emphasize that the use of reference systems provides critical information for the monitoring of ecosystem development towards an expected future state of the restored area.
国家哲学社会科学文献中心版权所有