摘要:In this paper, two simple and physically meaningful adjustments were made to a momentum-based clubhead-ball impact model to predict golf ball launch conditions with better accuracy. These adjustments were motivated by two shortcomings of the momentum-based impact model, namely the absence of shaft effects and golf ball deformation. Kinematic data from a golf impact motion capture experiment was used to empirically determine the parameter adjustments that minimized the ball speed and spin errors. It was found that the original model’s ball speed deficiency could be corrected by adding less than 3 g to the clubhead mass, and the amount of added mass correlated with the mass of the shaft. Additionally, the original model’s backspin and sidespin errors were significantly reduced by making a slight adjustment to the golf ball’s center of mass position relative to the impact location. Specifically, moving the golf ball center of mass approximately 0.5 mm downward and 0.07 mm towards the heel reduced the mean backspin and sidespin errors by approximately 85% each.