摘要:Diving consists of jumping into water from a platform, usually while performing acrobatics. During high diving competitions, the initial height reaches 27 m. From this height, the crossing of the water surface occurs at 85 km/h, and as such it is very technical to avoid injuries. Major risks occur due to the violent impact at the water entry and the formation and collapse of the air cavity around the diver. In this study, we investigate experimentally the dynamics of the jumper underwater and the hydrodynamic causes of injuries in high dives by monitoring dives from different heights with high-speed cameras and accelerometers in order to understand the physics underlying diving.