摘要:Usage of carbon fiber reinforced plastics (CFRPs) in running-specific prostheses increases day by day. The tailorable properties of CFRP blades bring many discussions about design and performance. In this study, the effect of shape on performance is investigated through force-displacement characteristics of the prosthesis. For this purpose, the geometry of prosthesis is defined by using B-splines with an initially given thickness. The prosthesis is exposed to vertical tip load at the mounting point, and contact is defined between the prosthesis and ground without friction. The aim of the simulation is to observe the contact behavior of athletes at different positions during the contact phase of a prosthesis. While the prosthesis is in contact with the ground, two different behaviors are observed: compression occurs at a larger contact zone, whereas release occurs at a smaller contact region (almost only the tip of the prosthesis). Different force-displacement characteristics, such as linear and second order, are obtained and the geometry of the prosthesis is optimized to adjust the behavior in the first region. The releasing phase of a prosthesis is related to the contact angle (angle of attack) and stiffness of the prosthesis. The two phases of contact are combined into a non-linear spring-mass system. Ground reaction forces are estimated through the non-linear mass-spring system. Finally, the importance of contacting area, length of moment arm during contact, and effect of each type of force-displacement characteristics on performance is discussed.