首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Bayesian Model Averaging with the Integrated Nested Laplace Approximation
  • 本地全文:下载
  • 作者:Virgilio Gómez-Rubio ; Roger S. Bivand ; Håvard Rue
  • 期刊名称:Econometrics
  • 印刷版ISSN:2225-1146
  • 出版年度:2020
  • 卷号:8
  • 期号:23
  • 页码:23
  • DOI:10.3390/econometrics8020023
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The integrated nested Laplace approximation (INLA) for Bayesian inference is an efficient approach to estimate the posterior marginal distributions of the parameters and latent effects of Bayesian hierarchical models that can be expressed as latent Gaussian Markov random fields (GMRF). The representation as a GMRF allows the associated software R-INLA to estimate the posterior marginals in a fraction of the time as typical Markov chain Monte Carlo algorithms. INLA can be extended by means of Bayesian model averaging (BMA) to increase the number of models that it can fit to conditional latent GMRF. In this paper, we review the use of BMA with INLA and propose a new example on spatial econometrics models.
国家哲学社会科学文献中心版权所有