首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:High-Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression
  • 本地全文:下载
  • 作者:Xuan Cao ; Kshitij Khare ; Malay Ghosh
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:1
  • 页码:241-262
  • DOI:10.1214/19-BA1154
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:The choice of tuning parameters in Bayesian variable selection is a critical problem in modern statistics. In particular, for Bayesian linear regression with non-local priors, the scale parameter in the non-local prior density is an important tuning parameter which reflects the dispersion of the non-local prior density around zero, and implicitly determines the size of the regression coefficients that will be shrunk to zero. Current approaches treat the scale parameter as given, and suggest choices based on prior coverage/asymptotic considerations. In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016) with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the tuning parameter to analyze the underlying theoretical property. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where p is allowed to increase at a polynomial rate with n or even at a sub-exponential rate with n. Through simulation studies, we demonstrate that our model selection procedure can outperform other Bayesian methods which treat the scale parameter as given, and commonly used penalized likelihood methods, in a range of simulation settings.
  • 关键词:posterior consistency; high-dimensional data; non-local prior; model selection; multivariate regression
国家哲学社会科学文献中心版权所有