首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Joint Modeling of Longitudinal Relational Data and Exogenous Variables
  • 本地全文:下载
  • 作者:Rajarshi Guhaniyogi ; Abel Rodriguez
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:2
  • 页码:477-503
  • DOI:10.1214/19-BA1160
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:This article proposes a framework based on shared, time varying stochastic latent factor models for modeling relational data in which network and node-attributes co-evolve over time. Our proposed framework is flexible enough to handle both categorical and continuous attributes, allows us to estimate the dimension of the latent social space, and automatically yields Bayesian hypothesis tests for the association between network structure and nodal attributes. Additionally, the model is easy to compute and readily yields inference and prediction for missing link between nodes. We employ our model framework to study co-evolution of international relations between 22 countries and the country specific indicators over a period of 11 years.
  • 关键词:latent factor model; nodal attribute; social network; spike and slab prior; systemic dimensions
国家哲学社会科学文献中心版权所有