首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Bayesian Inference of Spatio-Temporal Changes of Arctic Sea Ice
  • 本地全文:下载
  • 作者:Bohai Zhang ; Noel Cressie
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:2
  • 页码:605-631
  • DOI:10.1214/20-BA1209
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Arctic sea ice extent has drawn increasing interest and alarm from geoscientists, owing to its rapid decline. In this article, we propose a Bayesian spatio-temporal hierarchical statistical model for binary Arctic sea ice data over two decades, where a latent dynamic spatio-temporal Gaussian process is used to model the data-dependence through a logit link function. Our ultimate goal is to perform inference on the dynamic spatial behavior of Arctic sea ice over a period of two decades. Physically motivated covariates are assessed using autologistic diagnostics. Our Bayesian spatio-temporal model shows how parameter uncertainty in such a complex hierarchical model can influence spatio-temporal prediction. The posterior distributions of new summary statistics are proposed to detect the changing patterns of Arctic sea ice over two decades since 1997.
  • 关键词:binary data; forecasting; hierarchical statistical model; latent Gaussian process; MCMC
国家哲学社会科学文献中心版权所有