首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Infinite Mixtures of Infinite Factor Analysers
  • 本地全文:下载
  • 作者:Keefe Murphy ; Cinzia Viroli ; Isobel Claire Gormley
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:3
  • 页码:937-963
  • DOI:10.1214/19-BA1179
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Factor-analytic Gaussian mixtures are often employed as a model-based approach to clustering high-dimensional data. Typically, the numbers of clusters and latent factors must be fixed in advance of model fitting. The pair which optimises some model selection criterion is then chosen. For computational reasons, having the number of factors differ across clusters is rarely considered.
  • 关键词:model-based clustering; factor analysis; Pitman-Yor process; multiplicative gamma process; adaptive Markov chain Monte Carlo
国家哲学社会科学文献中心版权所有