首页    期刊浏览 2025年08月23日 星期六
登录注册

文章基本信息

  • 标题:On the eigenvalues of truncations of random unitary matrices
  • 本地全文:下载
  • 作者:Elizabeth Meckes ; Kathryn Stewart
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2019
  • 卷号:24
  • DOI:10.1214/19-ECP258
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We consider the empirical eigenvalue distribution of an $m\times m$ principle submatrix of an $n\times n$ random unitary matrix distributed according to Haar measure. Earlier work of Petz and Réffy identified the limiting spectral measure if $\frac{m} {n}\to \alpha $, as $n\to \infty $; under suitable scaling, the family $\{\mu _{\alpha }\}_{\alpha \in (0,1)}$ of limiting measures interpolates between uniform measure on the unit disc (for small $\alpha $) and uniform measure on the unit circle (as $\alpha \to 1$). In this note, we prove an explicit concentration inequality which shows that for fixed $n$ and $m$, the bounded-Lipschitz distance between the empirical spectral measure and the corresponding $\mu _{\alpha }$ is typically of order $\sqrt{\frac {\log (m)}{m}} $ or smaller. The approach is via the theory of two-dimensional Coulomb gases and makes use of a new “Coulomb transport inequality” due to Chafaï, Hardy, and Maïda.
  • 关键词:random matrices; truncations; submatrices; empirical spectral measure; Coulomb gas; concentration inequalities; Haar measure
国家哲学社会科学文献中心版权所有