首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Existence and uniqueness of solution to scalar BSDEs with $L\exp (\mu \sqrt{2\log (1+L)} )$-integrable terminal values: the critical case
  • 本地全文:下载
  • 作者:Shengjun Fan ; Ying Hu
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2019
  • 卷号:24
  • DOI:10.1214/19-ECP254
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:In [8], the existence of the solution is proved for a scalar linearly growingbackward stochastic differential equation (BSDE) when the terminal value is$L\exp (\mu \sqrt{2\log (1+L)} )$-integrable for a positive parameter $\mu >\mu _{0}$ with a critical value $\mu _{0}$, and a counterexample is provided to show that the preceding integrability for $\mu <\mu _{0}$ is not sufficient to guarantee the existence of the solution. Afterwards, the uniqueness result (with $\mu >\mu _{0}$) is also given in [3] for the preceding BSDE under the uniformly Lipschitz condition of the generator. In this note, we prove that these two results still hold for the critical case: $\mu =\mu _{0}$.
  • 关键词:backward stochastic differential equation; $L\exp (\mu \sqrt{2\log (1+L)} )$-integrability; existence and uniqueness; critical case
国家哲学社会科学文献中心版权所有