摘要:In [8], the existence of the solution is proved for a scalar linearly growingbackward stochastic differential equation (BSDE) when the terminal value is$L\exp (\mu \sqrt{2\log (1+L)} )$-integrable for a positive parameter $\mu >\mu _{0}$ with a critical value $\mu _{0}$, and a counterexample is provided to show that the preceding integrability for $\mu <\mu _{0}$ is not sufficient to guarantee the existence of the solution. Afterwards, the uniqueness result (with $\mu >\mu _{0}$) is also given in [3] for the preceding BSDE under the uniformly Lipschitz condition of the generator. In this note, we prove that these two results still hold for the critical case: $\mu =\mu _{0}$.
关键词:backward stochastic differential equation; $L\exp (\mu \sqrt{2\log (1+L)} )$-integrability; existence and uniqueness; critical case