首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Asymptotics of Schur functions on almost staircase partitions
  • 本地全文:下载
  • 作者:Zhongyang Li
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2020
  • 卷号:25
  • DOI:10.1214/20-ECP332
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We study the asymptotics of Schur polynomials with partitions $\lambda $ which are almost staircase; more precisely, partitions that differ from $((m-1)(N-1),(m-1)(N-2),\ldots ,(m-1),0)$ by at most one component at the beginning as $N\rightarrow \infty $, for a positive integer $m\ge 1$ independent of $N$. By applying either determinant formulas or integral representations for Schur functions, we show that $\frac {1}{N}\log \frac {s_{\lambda }(u_{1},\ldots ,u_{k}, x_{k+1},\ldots ,x_{N})}{s_{\lambda }(x_{1},\ldots ,x_{N})}$ converges to a sum of $k$ single-variable holomorphic functions, each of which depends on the variable $u_{i}$ for $1\leq i\leq k$, when there are only finitely many distinct $x_{i}$’s and each $u_{i}$ is in a neighborhood of $x_{i}$, as $N\rightarrow \infty $. The results are related to the law of large numbers and central limit theorem for the dimer configurations on contracting square-hexagon lattices with certain boundary conditions.
  • 关键词:dimer; limit shape; Schur polynomial
国家哲学社会科学文献中心版权所有