首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model
  • 本地全文:下载
  • 作者:Léa Longepierre ; Catherine Matias
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:4157-4223
  • DOI:10.1214/19-EJS1624
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider a dynamic version of the stochastic block model, in which the nodes are partitioned into latent classes and the connection between two nodes is drawn from a Bernoulli distribution depending on the classes of these two nodes. The temporal evolution is modeled through a hidden Markov chain on the nodes memberships. We prove the consistency (as the number of nodes and time steps increase) of the maximum likelihood and variational estimators of the model parameters, and obtain upper bounds on the rates of convergence of these estimators. We also explore the particular case where the number of time steps is fixed and connectivity parameters are allowed to vary.
  • 关键词:Maximum likelihood estimation; dynamic network; dynamic stochastic block model; variational estimation; temporal network
国家哲学社会科学文献中心版权所有