首页    期刊浏览 2025年06月03日 星期二
登录注册

文章基本信息

  • 标题:Importance sampling and its optimality for stochastic simulation models
  • 本地全文:下载
  • 作者:Yen-Chi Chen ; Youngjun Choe
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:3386-3423
  • DOI:10.1214/19-EJS1604
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the problem of estimating an expected outcome from a stochastic simulation model. Our goal is to develop a theoretical framework on importance sampling for such estimation. By investigating the variance of an importance sampling estimator, we propose a two-stage procedure that involves a regression stage and a sampling stage to construct the final estimator. We introduce a parametric and a nonparametric regression estimator in the first stage and study how the allocation between the two stages affects the performance of the final estimator. We analyze the variance reduction rates and derive oracle properties of both methods. We evaluate the empirical performances of the methods using two numerical examples and a case study on wind turbine reliability evaluation.
  • 关键词:Nonparametric estimation; stochastic simulation model; oracle property; variance reduction; Monte Carlo
国家哲学社会科学文献中心版权所有