首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Quantile regression approach to conditional mode estimation
  • 本地全文:下载
  • 作者:Hirofumi Ota ; Kengo Kato ; Satoshi Hara
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:3120-3160
  • DOI:10.1214/19-EJS1607
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, we consider estimation of the conditional mode of an outcome variable given regressors. To this end, we propose and analyze a computationally scalable estimator derived from a linear quantile regression model and develop asymptotic distributional theory for the estimator. Specifically, we find that the pointwise limiting distribution is a scale transformation of Chernoff’s distribution despite the presence of regressors. In addition, we consider analytical and subsampling-based confidence intervals for the proposed estimator. We also conduct Monte Carlo simulations to assess the finite sample performance of the proposed estimator together with the analytical and subsampling confidence intervals. Finally, we apply the proposed estimator to predicting the net hourly electrical energy output using Combined Cycle Power Plant Data.
  • 关键词:Chernoff’s distribution; cube root asymptotics; modal regression; quantile regression
国家哲学社会科学文献中心版权所有