首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Adaptive procedure for Fourier estimators: application to deconvolution and decompounding
  • 本地全文:下载
  • 作者:Céline Duval ; Johanna Kappus
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:3424-3452
  • DOI:10.1214/19-EJS1602
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The purpose of this paper is twofold. First, introduce a new adaptive procedure to select the optimal – up to a logarithmic factor – cutoff parameter for Fourier density estimators. Two inverse problems are considered: deconvolution and decompounding. Deconvolution is a typical inverse problem, for which our procedure is numerically simple and stable, a comparison is performed with penalized techniques. Moreover, the procedure and the proof of oracle bounds do not rely on any knowledge on the noise term. Second, for decompounding, i.e. non-parametric estimation of the jump density of a compound Poisson process from the observation of $n$ increments at timestep $\Delta$, build an unified adaptive estimator which is optimal – up to a logarithmic factor – regardless the behavior of $\Delta$.
  • 关键词:Adaptive density estimation; deconvolution; decompounding; model selection
国家哲学社会科学文献中心版权所有