首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Testing goodness of fit for point processes via topological data analysis
  • 本地全文:下载
  • 作者:Christophe A. N. Biscio ; Nicolas Chenavier ; Christian Hirsch
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:1024-1074
  • DOI:10.1214/20-EJS1683
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.
  • 关键词:Point processes; goodness-of-fit tests; central limit theorem; topological data analysis; persistent Betti number
国家哲学社会科学文献中心版权所有