首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Gaussian field on the symmetric group: Prediction and learning
  • 本地全文:下载
  • 作者:François Bachoc ; Baptiste Broto ; Fabrice Gamboa
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:503-546
  • DOI:10.1214/19-EJS1674
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In the framework of the supervised learning of a real function defined on an space $\mathcal{X}$, Gaussian processes are widely used. The Euclidean case for $\mathcal{X}$ is well known and has been widely studied. In this paper, we explore the less classical case where $\mathcal{X}$ is the non commutative finite group of permutations (namely the so-called symmetric group $S_{N}$). We provide an application to Gaussian process based optimization of Latin Hypercube Designs. We also extend our results to the case of partial rankings.
  • 关键词:Learning; Gaussian processes; covariance functions; statistical ranking; partial rankings
国家哲学社会科学文献中心版权所有