首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:$k$-means clustering of extremes
  • 本地全文:下载
  • 作者:Anja Janßen ; Phyllis Wan
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:1211-1233
  • DOI:10.1214/20-EJS1689
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The $k$-means clustering algorithm and its variant, the spherical $k$-means clustering, are among the most important and popular methods in unsupervised learning and pattern detection. In this paper, we explore how the spherical $k$-means algorithm can be applied in the analysis of only the extremal observations from a data set. By making use of multivariate extreme value analysis we show how it can be adopted to find “prototypes” of extremal dependence and derive a consistency result for our suggested estimator. In the special case of max-linear models we show furthermore that our procedure provides an alternative way of statistical inference for this class of models. Finally, we provide data examples which show that our method is able to find relevant patterns in extremal observations and allows us to classify extremal events.
  • 关键词:dimension reduction; extreme value statistics; $k$-means clustering; spectral measure
国家哲学社会科学文献中心版权所有