首页    期刊浏览 2025年06月26日 星期四
登录注册

文章基本信息

  • 标题:The bias of isotonic regression
  • 本地全文:下载
  • 作者:Ran Dai ; Hyebin Song ; Rina Foygel Barber
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:801-834
  • DOI:10.1214/20-EJS1677
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study the bias of the isotonic regression estimator. While there is extensive work characterizing the mean squared error of the isotonic regression estimator, relatively little is known about the bias. In this paper, we provide a sharp characterization, proving that the bias scales as $O(n^{-\beta /3})$ up to log factors, where $1\leq \beta \leq 2$ is the exponent corresponding to Hölder smoothness of the underlying mean. Importantly, this result only requires a strictly monotone mean and that the noise distribution has subexponential tails, without relying on symmetric noise or other restrictive assumptions.
  • 关键词:Isotonic regression; bias
国家哲学社会科学文献中心版权所有