首页    期刊浏览 2025年12月27日 星期六
登录注册

文章基本信息

  • 标题:Kaplan-Meier V- and U-statistics
  • 本地全文:下载
  • 作者:Tamara Fernández ; Nicolás Rivera
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:1872-1916
  • DOI:10.1214/20-EJS1704
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, we study Kaplan-Meier V- and U-statistics respectively defined as $\theta (\widehat{F}_{n})=\sum _{i,j}K(X_{[i:n]},X_{[j:n]})W_{i}W_{j}$ and $\theta _{U}(\widehat{F}_{n})=\sum _{i\neq j}K(X_{[i:n]},X_{[j:n]})W_{i}W_{j}/\sum _{i\neq j}W_{i}W_{j}$, where $\widehat{F}_{n}$ is the Kaplan-Meier estimator, $\{W_{1},\ldots ,W_{n}\}$ are the Kaplan-Meier weights and $K:(0,\infty )^{2}\to \mathbb{R}$ is a symmetric kernel. As in the canonical setting of uncensored data, we differentiate between two asymptotic behaviours for $\theta (\widehat{F}_{n})$ and $\theta _{U}(\widehat{F}_{n})$. Additionally, we derive an asymptotic canonical V-statistic representation of the Kaplan-Meier V- and U-statistics. By using this representation we study properties of the asymptotic distribution. Applications to hypothesis testing are given.
  • 关键词:Kaplan-Meier estimator; right-censoring; V-statistics
国家哲学社会科学文献中心版权所有