首页    期刊浏览 2025年07月05日 星期六
登录注册

文章基本信息

  • 标题:Asymptotics and optimal bandwidth for nonparametric estimation of density level sets
  • 本地全文:下载
  • 作者:Wanli Qiao
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:302-344
  • DOI:10.1214/19-EJS1668
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic $L^{p}$ approximation to this risk, where $p$ is characterized by the weight function in the risk. In particular the excess risk corresponds to an $L^{2}$ type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of $d$-dimensional density functions ($d\geq 1$). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies.
  • 关键词:Level set; optimal bandwidth; kernel density estimation; symmetric difference
国家哲学社会科学文献中心版权所有