首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Estimation of linear projections of non-sparse coefficients in high-dimensional regression
  • 本地全文:下载
  • 作者:David Azriel ; Armin Schwartzman
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:174-206
  • DOI:10.1214/19-EJS1656
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${\boldsymbol{\beta}}$ and we study estimation of $\mathbf{a}^{T}{\boldsymbol{\beta}}$. We show that $\mathbf{a}^{T}\hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero.
  • 关键词:High-dimensional regression; linear projections
国家哲学社会科学文献中心版权所有