首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Artificial intelligence in seismology: Advent, performance and future trends
  • 本地全文:下载
  • 作者:Pengcheng Jiao ; Amir H. Alavi
  • 期刊名称:Geoscience Frontiers
  • 印刷版ISSN:1674-9871
  • 出版年度:2020
  • 卷号:11
  • 期号:3
  • 页码:739-744
  • DOI:10.1016/j.gsf.2019.10.004
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Realistically predicting earthquake is critical for seismic risk assessment, prevention and safe design of major structures. Due to the complex nature of seismic events, it is challengeable to efficiently identify the earthquake response and extract indicative features from the continuously detected seismic data. These challenges severely impact the performance of traditional seismic prediction models and obstacle the development of seismology in general. Taking their advantages in data analysis, artificial intelligence (AI) techniques have been utilized as powerful statistical tools to tackle these issues. This typically involves processing massive detected data with severe noise to enhance the seismic performance of structures. From extracting meaningful sensing data to unveiling seismic events that are below the detection level, AI assists in identifying unknown features to more accurately predicting the earthquake activities. In this focus paper, we provide an overview of the recent AI studies in seismology and evaluate the performance of the major AI techniques including machine learning and deep learning in seismic data analysis. Furthermore, we envision the future direction of the AI methods in earthquake engineering which will involve deep learning-enhanced seismology in an internet-of-things (IoT) platform.Graphical abstractDownload : Download high-res image (292KB)Download : Download full-size image
  • 关键词:Seismology;Artificial intelligence;Machine learning;Deep learning;Internet-of-Things
国家哲学社会科学文献中心版权所有