首页    期刊浏览 2024年09月14日 星期六
登录注册

文章基本信息

  • 标题:Metasomatism-induced wehrlite formation in the upper mantle beneath the Nógrád-Gömör Volcanic Field (Northern Pannonian Basin): Evidence from xenoliths
  • 本地全文:下载
  • 作者:Levente Patkó ; Nóra Liptai ; László Előd Aradi
  • 期刊名称:Geoscience Frontiers
  • 印刷版ISSN:1674-9871
  • 出版年度:2020
  • 卷号:11
  • 期号:3
  • 页码:943-964
  • DOI:10.1016/j.gsf.2019.09.012
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common (~20% of all xenoliths) in the central part of the Nógrád-Gömör Volcanic Field (NGVF), situated in the northern margin of the Pannonian Basin in northern Hungary and southern Slovakia. In this study, we thoroughly investigated 12 wehrlite xenoliths, two from each wehrlite-bearing occurrence, to determine the conditions of their formation. Specific textural features, including clinopyroxene-rich patches in an olivine-rich lithology, orthopyroxene remnants in the cores of newly-formed clinopyroxenes and vermicular spinel forms all suggest that wehrlites were formed as a result of intensive interaction between a metasomatic agent and the peridotite wall rock. Based on the major and trace element geochemistry of the rock-forming minerals, significant enrichment in basaltic (Fe, Mn, Ti) and high field strength elements (Nb, Ta, Hf, Zr) was observed, compared to compositions of common lherzolite xenoliths. The presence of orthopyroxene remnants and geochemical trends in rock-forming minerals suggest that the metasomatic process ceased before complete wehrlitization was achieved. The composition of the metasomatic agent is interpreted to be a mafic silicate melt, which was further confirmed by numerical modelling of trace elements using the plate model. The model results also show that the melt/rock ratio played a key role in the degree of petrographic and geochemical transformation. The lack of equilibrium and the conclusions drawn by using variable lherzolitic precursors in the model both suggest that wehrlitization was the last event that occurred shortly before xenolith entrainment in the host mafic melt. We suggest that the wehrlitization and the Plio–Pleistocene basaltic volcanism are related to the same magmatic event.Graphical abstractDownload : Download high-res image (420KB)Download : Download full-size image
  • 关键词:Wehrlite xenoliths;Upper mantle metasomatism;Mafic silicate melt;Trace element modelling
国家哲学社会科学文献中心版权所有