首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multi-stage NMPC using sigma point principles
  • 本地全文:下载
  • 作者:Sakthi Thangavel ; Radoslav Paulen ; Sebastian Engell
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:1
  • 页码:386-391
  • DOI:10.1016/j.ifacol.2020.06.065
  • 语种:English
  • 出版社:Elsevier
  • 摘要:A novel non-conservative robust nonlinear model predictive control scheme (NMPC) based on the multi-stage formulation is introduced for the case of an ellipsoidal uncertainty set. Multi-stage NMPC models uncertainty by a tree of discrete scenarios. In the case of a continuous-valued uncertainty, the scenario tree is usually built for all combinations of the minimum, nominal and maximum values of the uncertainty. If the uncertainty set is ellipsoidal, the standard multi-stage NMPC augments the uncertainty set which results in a performance loss while using the robust NMPC approaches. We propose to mitigate this problem by tightly over-approximating the uncertainty set using the so-called sigma points. An ellipsoidal over-approximation of the reachable set of the system is predicted along the prediction horizon using the unscented transformation. The advantages of the proposed scheme over the traditional multi-stage NMPC are demonstrated for a benchmark semi-batch reactor case study.
  • 关键词:model predictive control;robust model predictive control;parameter uncertainty;multi-stage NMPC;unscented transformation;chemical process control
国家哲学社会科学文献中心版权所有