首页    期刊浏览 2024年07月01日 星期一
登录注册

文章基本信息

  • 标题:First detection of 13CH in the interstellar medium
  • 本地全文:下载
  • 作者:Arshia M. Jacob ; Karl M. Menten ; Helmut Wiesemeyer
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2020
  • 卷号:640
  • 页码:1-11
  • DOI:10.1051/0004-6361/201937385
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:In recent years, a plethora of observations with high spectral resolution of sub-millimetre and far-infrared transitions of methylidene (CH), conducted withHerscheland SOFIA, have demonstrated this radical to be a valuable proxy for molecular hydrogen that can be used for characterising molecular gas within the interstellar medium on a Galactic scale, including the CO-dark component. We report the discovery of the13CH isotopologue in the interstellar medium using the upGREAT receiver on board SOFIA. We have detected the three hyperfine structure components of the ≈2 THz frequency transition from its X2Π1∕2ground-state towards the high-mass star-forming regions Sgr B2(M), G34.26+0.15, W49(N), and W51E and determined13CH column densities. The ubiquity of molecules containing carbon in the interstellar medium has turned the determination of the ratio between the abundances of the two stable isotopes of carbon,12C/13C, into a cornerstone for Galactic chemical evolution studies. Whilst displaying a rising gradient with galactocentric distance, this ratio, when measured using observations of different molecules (CO, H2CO, and others), shows systematic variations depending on the tracer used. These observed inconsistencies may arise from optical depth effects, chemical fractionation, or isotope-selective photo-dissociation. Formed from C+either through UV-driven or turbulence-driven chemistry, CH reflects the fractionation of C+, and does not show any significant fractionation effects, unlike other molecules that were previously used to determine the12C/13C isotopic ratio. This makes it an ideal tracer for the12C/13C ratio throughout the Galaxy. By comparing the derived column densities of13CH with previously obtained SOFIA data of the corresponding transitions of the main isotopologue12CH, we therefore derive12C/13C isotopic ratios toward Sgr B2(M), G34.26+0.15, W49(N) and W51E. Adding our values derived from12∕13CH to previous calculations of the Galactic isotopic gradient, we derive a revised value of12C/13C = 5.87(0.45)RGC+ 13.25(2.94).
  • 关键词:Key wordsenline: identificationmolecular datamolecular processesISM: moleculesevolution
国家哲学社会科学文献中心版权所有