首页    期刊浏览 2025年08月25日 星期一
登录注册

文章基本信息

  • 标题:Gibbs-type Indian Buffet Processes
  • 本地全文:下载
  • 作者:Creighton Heaukulani ; Daniel M. Roy
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:3
  • 页码:683-710
  • DOI:10.1214/19-BA1166
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We investigate a class of feature allocation models that generalize the Indian buffet process and are parameterized by Gibbs-type random measures. Two existing classes are contained as special cases: the original two-parameter Indian buffet process, corresponding to the Dirichlet process, and the stable (or three-parameter) Indian buffet process, corresponding to the Pitman–Yor process. Asymptotic behavior of the Gibbs-type partitions, such as power laws holding for the number of latent clusters, translates into analogous characteristics for this class of Gibbs-type feature allocation models. Despite containing several different distinct subclasses, the properties of Gibbs-type partitions allow us to develop a black-box procedure for posterior inference within any subclass of models. Through numerical experiments, we compare and contrast a few of these subclasses and highlight the utility of varying power-law behaviors in the latent features.
  • 关键词:feature allocation;partition;combinatorial stochastic processes;completely random measure;Bayesian nonparametrics
国家哲学社会科学文献中心版权所有