首页    期刊浏览 2025年04月27日 星期日
登录注册

文章基本信息

  • 标题:Green kernel asymptotics for two-dimensional random walks under random conductances
  • 本地全文:下载
  • 作者:Sebastian Andres ; Jean-Dominique Deuschel ; Martin Slowik
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2020
  • 卷号:25
  • DOI:10.1214/20-ECP337
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We consider random walks among random conductances on $\mathbb {Z}^{2}$ and establish precise asymptotics for the associated potential kernel and the Green’s function of the walk killed upon exiting balls. The result is proven for random walks on i.i.d. supercritical percolation clusters among ergodic degenerate conductances satisfying a moment condition. We also provide a similar result for the time-dynamic random conductance model. As an application we present a scaling limit for the variances in the Ginzburg-Landau $\nabla \phi $-interface model.
  • 关键词:random walk;Green kernel;random conductance model;stochastic interface model
国家哲学社会科学文献中心版权所有