首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:From Gauss to Kolmogorov: Localized measures of complexity for ellipses
  • 本地全文:下载
  • 作者:Yuting Wei ; Billy Fang ; Martin J. Wainwright
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:2
  • 页码:2988-3031
  • DOI:10.1214/20-EJS1739
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The Gaussian width is a fundamental quantity in probability, statistics and geometry, known to underlie the intrinsic difficulty of estimation and hypothesis testing. In this work, we show how the Gaussian width, when localized to any given point of an ellipse, can be controlled by the Kolmogorov width of a set similarly localized. Among other consequences, this connection, when coupled with a previous result due to Chatterjee, leads to a tight characterization of the estimation error of least-squares regression as a function of the true regression vector within the ellipse. This characterization reveals that the rate of error decay varies substantially as a function of location: as a concrete example, in Sobolev ellipses of smoothness $\alpha $, we exhibit rates that vary from $(\sigma ^{2})^{\frac{2\alpha }{2\alpha +1}}$, corresponding to the classical global rate, to the faster rate $(\sigma ^{2})^{\frac{4\alpha }{4\alpha +1}}$. We also show how the local Kolmogorov width can be related to local metric entropy.
  • 关键词:Complexity measure;ellipse constraint;Kolmogorov width;least squares;adaptive estimation
国家哲学社会科学文献中心版权所有