首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Efficient Parallel Algorithm for Estimating Higher-order Polyspectra
  • 本地全文:下载
  • 作者:Joseph Tomlinson ; Donghui Jeong ; Juhan Kim
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2019
  • 卷号:158
  • 期号:3
  • 页码:1-11
  • DOI:10.3847/1538-3881/ab3223
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Nonlinearities in the gravitational evolution, galaxy bias, and redshift-space distortion drive the observed galaxy density fields away from the initial near-Gaussian states. Exploiting such a non-Gaussian galaxy density field requires measuring higher-order correlation functions, or, its Fourier counterpart, polyspectra. Here, we present an efficient parallel algorithm for estimating higher-order polyspectra. Based upon the Scoccimarro estimator, the estimator avoids direct sampling of polygons using the fast Fourier transform, and the parallelization overcomes the large memory requirement of the original estimator. In particular, we design the memory layout to minimize the inter-CPU communications, which excels in the code performance.
  • 关键词:large-scale structure of universe;methods: data analysis
国家哲学社会科学文献中心版权所有