首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Large deviations for the largest eigenvalues and eigenvectors of spiked Gaussian random matrices
  • 本地全文:下载
  • 作者:Giulio Biroli ; Alice Guionnet
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2020
  • 卷号:25
  • DOI:10.1214/20-ECP343
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We consider matrices formed by a random $N\times N$ matrix drawn from the Gaussian Orthogonal Ensemble (or Gaussian Unitary Ensemble) plus a rank-one perturbation of strength $\theta $, and focus on the largest eigenvalue, $x$, and the component, $u$, of the corresponding eigenvector in the direction associated to the rank-one perturbation. We obtain the large deviation principle governing the atypical joint fluctuations of $x$ and $u$. Interestingly, for $\theta >1$, large deviations events characterized by a small value of $u$, i.e. $u<1-1/\theta $, are such that the second-largest eigenvalue pops out from the Wigner semi-circle and the associated eigenvector orients in the direction corresponding to the rank-one perturbation. We generalize these results to the Wishart Ensemble, and we extend them to the first $n$ eigenvalues and the associated eigenvectors.
  • 关键词:random matrices;large deviations
国家哲学社会科学文献中心版权所有