首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Modeling of time series using random forests: Theoretical developments
  • 本地全文:下载
  • 作者:Richard A. Davis ; Mikkel S. Nielsen
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:2
  • 页码:3644-3671
  • DOI:10.1214/20-EJS1758
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper we study asymptotic properties of random forests within the framework of nonlinear time series modeling. While random forests have been successfully applied in various fields, the theoretical justification has not been considered for their use in a time series setting. Under mild conditions, we prove a uniform concentration inequality for regression trees built on nonlinear autoregressive processes and, subsequently, we use this result to prove consistency for a large class of random forests. The results are supported by various simulations.
  • 关键词:Markov processes;nonlinear autoregressive models;nonparametric regression;random forests
国家哲学社会科学文献中心版权所有