首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Anchored Bayesian Gaussian mixture models
  • 本地全文:下载
  • 作者:Deborah Kunkel ; Mario Peruggia
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:2
  • 页码:3869-3913
  • DOI:10.1214/20-EJS1756
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Finite mixtures are a flexible modeling tool for irregularly shaped densities and samples from heterogeneous populations. When modeling with mixtures using an exchangeable prior on the component features, the component labels are arbitrary and are indistinguishable in posterior analysis. This makes it impossible to attribute any meaningful interpretation to the marginal posterior distributions of the component features. We propose a model in which a small number of observations are assumed to arise from some of the labeled component densities. The resulting model is not exchangeable, allowing inference on the component features without post-processing. Our method assigns meaning to the component labels at the modeling stage and can be justified as a data-dependent informative prior on the labelings. We show that our method produces interpretable results, often (but not always) similar to those resulting from relabeling algorithms, with the added benefit that the marginal inferences originate directly from a well specified probability model rather than a post hoc manipulation. We provide asymptotic results leading to practical guidelines for model selection that are motivated by maximizing prior information about the class labels and demonstrate our method on real and simulated data.
  • 关键词:Label switching;data-dependent prior;identifiability;EM algorithm
国家哲学社会科学文献中心版权所有