首页    期刊浏览 2025年07月01日 星期二
登录注册

文章基本信息

  • 标题:Individual-Level Modelling of Infectious Disease Data EpiILM
  • 本地全文:下载
  • 作者:Vineetha Warriyar K. V. ; Waleed Almutiry ; Rob Deardon
  • 期刊名称:R News
  • 印刷版ISSN:1609-3631
  • 出版年度:2020
  • 卷号:12
  • 期号:1
  • 页码:87-104
  • 语种:English
  • 出版社:The R Foundation for Statistical Computing
  • 摘要:In this article we introduce the R package EpiILM, which provides tools for simulation from, and inference for, discrete-time individual-level models of infectious disease transmission proposed by Deardon et al. (2010). The inference is set in a Bayesian framework and is carried out via Metropolis Hastings Markov chain Monte Carlo (MCMC). For its fast implementation, key functions are coded in Fortran. Both spatial and contact network models are implemented in the package and can be set in either susceptible-infected (SI) or susceptible-infected-removed (SIR) compartmental frameworks. Use of the package is demonstrated through examples involving both simulated and real data.
国家哲学社会科学文献中心版权所有