摘要:Facial information is processed by our brain in such a way that we immediately make judgments about, for example, attractiveness or masculinity or interpret personality traits or moods of other people. The appearance of each facial feature has an effect on our perception of facial traits. This research addresses the problem of measuring the size of these effects for five facial features (eyes, eyebrows, nose, mouth, and jaw). Our proposal is a mixed feature-based and image-based approach that allows judgments to be made on complete real faces in the categorization tasks, more than on synthetic, noisy, or partial faces that can influence the assessment. Each facial feature of the faces is automatically classified considering their global appearance using principal component analysis. Using this procedure, we establish a reduced set of relevant specific attributes (each one describing a complete facial feature) to characterize faces. In this way, a more direct link can be established between perceived facial traits and what people intuitively consider an eye, an eyebrow, a nose, a mouth, or a jaw. A set of 92 male faces were classified using this procedure, and the results were related to their scores in 15 perceived facial traits. We show that the relevant features greatly depend on what we are trying to judge. Globally, the eyes have the greatest effect. However, other facial features are more relevant for some judgments like the mouth for happiness and femininity or the nose for dominance.