首页    期刊浏览 2024年09月16日 星期一
登录注册

文章基本信息

  • 标题:Performance Analysis of Sensor Systems for Space Situational Awareness
  • 本地全文:下载
  • 作者:Eun-Jung Choi ; Sungki Cho ; Jung Hyun Jo
  • 期刊名称:Journal of Astronomy and Space Sciences
  • 印刷版ISSN:2093-5587
  • 电子版ISSN:2093-1409
  • 出版年度:2017
  • 卷号:34
  • 期号:4
  • 页码:303-313
  • DOI:10.5140/JASS.2017.34.4.303
  • 语种:English
  • 出版社:Korean Space Science Society
  • 摘要:With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a 1-m2 radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.
  • 关键词:space situational awareness (SSA);space surveillance radar;space objects
国家哲学社会科学文献中心版权所有