期刊名称:International Research Journal of Environmental Sciences
电子版ISSN:2319-1414
出版年度:2018
卷号:7
期号:8
页码:1-7
语种:English
出版社:International Science Community Association
摘要:Textile effluent discharged from the small scale industries was assessed. There was a total difference in the physico chemical characteristics of effluent sample and bacterial and fungal consortia degraded samples. The untreated effluent samples were highly colored, fishy odour, slight alkaline. The other physic chemical properties like total solids (TS) total suspended solids (TSS), total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), hardness as CaCO3 alkalinity, bicarbonate (HCO3-) alkalinity, chloride, calcium, magnesium, sodium, sulphate, zinc, chromium, copper and lead were found to be above to the permissible level of WHO standards, which ensure the presence of pollutants in the textile effluent. From the polluted sites, four bacterial strains which are identified as indicator bacterial strains able to degrade the effluent and dye were used for the decolourization and degradation in vitro experiments. They are Bacillus subtilis (NCBT 012), Clostridium butyricum (NCBT 017), Enterobacter aerogens (NCBT 024) and Pseudomonas fluorescens (NCBT 046). Four fungal strains which are identified as indicator fungi, able to decolourize effectively were selected for the decolourization and degradation in vitro experimental work. They are Aspergillus erythrocephalus (NCBT 124), Aspergillus fumigates (NCBT 126), Cladosporium herbarum (NCBT 142) and Fusarium oxysporum (NCBT 156). The physico-chemical analysis of bacterial and fungal consortia mediated textile effluent degradation process have shown reduction in all these parameters tested for the untreated textile effluent. Between bacterial consortium and fungal consortium mediated degradation process, the fungal consortium mediated degradation process has shown much reduction in all the parameters than the bacterial consortium mediated degradation. The genotoxicity studies in relation to mitotic index and chromosomal abnormalities have shown gradual increase in active mitotic index and reduction in the chromosomal abnormalities which ensures the reduction in toxicity of textile effluent by bacterial and fungal consortia degradation.
关键词:Physico-chemical parameters;textile effluent;decolourization and degradation;genotoxicity