首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Cold Stress-induced Glucosyltransferase CsUGT78A15 is Involved in the Formation of Eugenol Glucoside in Camellia sinensis
  • 本地全文:下载
  • 作者:Mingyue Zhao ; Binbin Cai ; Jieyang Jin
  • 期刊名称:Horticultural Plant Journal
  • 印刷版ISSN:2468-0141
  • 出版年度:2020
  • 卷号:6
  • 期号:6
  • 页码:439-449
  • DOI:10.1016/j.hpj.2020.11.005
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractEugenol is a natural phenolic compound known for its health-promoting properties and its ability to add a floral scent to tea plants. Plant eugenol glycosides have been identified and shown to make important contributions to fruit floral quality. However, the details of their biosynthesis and metabolism in tea plants are still unknown. Here, eugenol glucoside was unambiguously identified as a native metabolite in the tea plant, and its biosynthesis was shown to be induced by low temperature treatment. Through the analysis of UGTs induced by low temperature, the glycosyltransferaseCsUGT78A15was identified in tea, and its encoded protein was shown to catalyze the glucosylation of eugenol.Vmax/Kmratios showed that eugenol was the most suitable substrate for CsUGT78A15. Sugar donor preference analysis showed that CsUGT78A15 had a higher selectivity for glucose, followed by galactose and glucuronic acid. The expression ofCsUGT78A15was correlated with the accumulation of eugenol glucoside in different tissues and genotypes of tea. Down-regulation ofCsUGT78A15led to a decreased eugenol glucoside content under cold stress, indicating that CsUGT78A15 plays an important role in the biosynthesis of eugenol glucoside under cold stress. The identification of eugenol glucoside in the tea plant and the discovery of a cold stress-induced eugenol glucosyltransferase in tea provide the foundation for the improvement of tea flavor under cold stress and the biotechnological production of eugenol glucoside.
  • 关键词:KeywordsCamellia sinensisEugenolGlucosyltransferaseCold stress
国家哲学社会科学文献中心版权所有