首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Optimality of Correlated Sampling Strategies
  • 本地全文:下载
  • 作者:Mohammad Bavarian ; Badih Ghazi ; Elad Haramaty
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2020
  • 卷号:16
  • 期号:1
  • 页码:1-18
  • DOI:10.4086/toc.2020.v016a012
  • 语种:English
  • 出版社:University of Chicago
  • 摘要:In the correlated sampling problem, two players are given probability distributions P and Q, respectively, over the same finite set, with access to shared randomness. Without any communication, the two players are each required to output an element sampled according to their respective distributions, while trying to minimize the probability that their outputs disagree. A well known strategy due to Kleinberg--Tardos and Holenstein, with a close variant (for a similar problem) due to Broder, solves this task with disagreement probability at most 2δ/(1+δ), where δ is the total variation distance between P and Q. This strategy has been used in several different contexts, including sketching algorithms, approximation algorithms based on rounding linear programming relaxations, the study of parallel repetition and cryptography. In this paper, we give a surprisingly simple proof that this strategy is essentially optimal. Specifically, for every δ∈(0,1), we show that any correlated sampling strategy incurs a disagreement probability of essentially 2δ/(1+δ) on some inputs P and Q with total variation distance at most δ. This partially answers a recent question of Rivest. Our proof is based on studying a new problem that we call constrained agreement. Here, the two players are given subsets A⊆[n] and B⊆[n], respectively, and their goal is to output an element i∈A and j∈B, respectively, while minimizing the probability that i≠j. We prove tight bounds for this question, which in turn imply tight bounds for correlated sampling. Though we settle basic questions about the two problems, our formulation leads to more fine grained questions that remain open.
  • 关键词:distributions; sampling; correlated sampling; coupling; MinHash; communication complexity
国家哲学社会科学文献中心版权所有