首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Change detection in streaming data analytics: A comparison of Bayesian online and martingale approaches
  • 本地全文:下载
  • 作者:Bernadin Namoano ; Christos Emmanouilidis ; Cristobal Ruiz-Carcel
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:3
  • 页码:336-341
  • DOI:10.1016/j.ifacol.2020.11.054
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractOn line change detection is a key activity in streaming analytics, which aims to determine whether the current observation in a time series marks a change point in some important characteristic of the data, given the sequence of data observed so far. It can be a challenging task when monitoring complex systems, which are generating streaming data of significant volume and velocity. While applicable to diverse problem domains, it is highly relevant to monitoring high value and critical engineering assets. This paper presents an empirical evaluation of two algorithmic approaches for streaming data change detection. These are a modified martingale and a Bayesian online detection algorithm. Results obtained with both synthetic and real world data sets are presented and relevant advantages and limitations are discussed.
  • 关键词:Keywordsstreaming analyticschange detectionmartingaleBayesian online detection
国家哲学社会科学文献中心版权所有