摘要:In this paper, we theoretically investigate the impacts of Internal well composition, size and impurity's position on the inter valence-conduction bands and intra conduction band optical absorption in GaN/(In,Ga)N/GaN hetero-structure. Based on the numerically finite element method (FEM), the impurity's related Schrödinger equation is solved for the finite potential barrier considering the dielectric constant and effective-mass mismatches between the well and its surrounding matrix. Our results show that the absorption is strongly governed by the dipole matrix element and initial and final implied states transition energies. For a fixed barrier width, the absorption spectra are found red-shifted (blue-shifted) with increasing the well width (In-concentration). It is also shown that the impurity's absorption phenomenon is more pronounced for the off-center case compared to the on-center one. We conclude that the proper control of these parameters is required to best understanding of the optical absorption for solar cell applications.