首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:MultiDefectNet: Multi-Class Defect Detection of Building Façade Based on Deep Convolutional Neural Network
  • 本地全文:下载
  • 作者:Kisu Lee ; Goopyo Hong ; Lee Sael
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2020
  • 卷号:12
  • 期号:22
  • 页码:9785
  • DOI:10.3390/su12229785
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Defects in residential building façades affect the structural integrity of buildings and degrade external appearances. Defects in a building façade are typically managed using manpower during maintenance. This approach is time-consuming, yields subjective results, and can lead to accidents or casualties. To address this, we propose a building façade monitoring system that utilizes an object detection method based on deep learning to efficiently manage defects by minimizing the involvement of manpower. The dataset used for training a deep-learning-based network contains actual residential building façade images. Various building designs in these raw images make it difficult to detect defects because of their various types and complex backgrounds. We employed the faster regions with convolutional neural network (Faster R-CNN) structure for more accurate defect detection in such environments, achieving an average precision (intersection over union (IoU) = 0.5) of 62.7% for all types of trained defects. As it is difficult to detect defects in a training environment, it is necessary to improve the performance of the network. However, the object detection network employed in this study yields an excellent performance in complex real-world images, indicating the possibility of developing a system that would detect defects in more types of building façades.
国家哲学社会科学文献中心版权所有