期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2020
卷号:9
期号:2
页码:69
DOI:10.3390/ijgi9020069
语种:English
出版社:MDPI AG
摘要:The stream length-gradient (SL) index is widely used in geomorphological studies aimed at detecting knickzones, which are extensive along-stream deviations from the typical concave-up shape assumed for stream longitudinal profiles at steady-state conditions. In particular, SL was practical for identifying anomalous gradients along bedrock stream channels in mountainous catchments. This work presents the GIS toolbox SLiX designed to extract values of the SL index, starting from Digital Elevation Models (DEMs). SLiX is also suitable for the spatial analysis of the SL values, allowing for the identification of landscape portions where anomalous high values of SL occur and, consequently, those catchment sectors where stream channels show peaks in the erosional dynamic. The SLiX main outputs are (i) point shapefiles containing, among stream channels attributes, the extracted values of SL along the stream network analyzed, and (ii) SL anomaly maps in GeoTIFF format, computed through the Hotspot and Cluster Analysis (HCA), that permit the detection of the catchment sectors where the major SL anomalies occur and consequently the principal knickzones. The application of the proposed tool within an experimental catchment located in the Northern Apennines of Italy demonstrated the proper functionality and the potential of its use for different geomorphological and environmental studies. The accurate and cost-effective detection of anomalous changes in stream gradient ensured by SLiX is of great interest and can be useful for studies aimed at unravelling the Earth processes responsible of their formation (e.g., active hillslope processes, such as landslides directly interacting with the streambed, presence of geological structures, and meander cut-off). The applications of SLiX have clear implications for preliminary analyses, at a regional scale in different morpho-climatic contexts, for the hydrological management of river basins and/or to prevent geological hazards related to the fluvial erosional dynamics.