首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines
  • 本地全文:下载
  • 作者:Min-Yuan Cheng ; Minh-Tu Cao
  • 期刊名称:Journal of Civil Engineering and Management
  • 印刷版ISSN:1392-3730
  • 出版年度:2016
  • 卷号:22
  • 期号:5
  • DOI:10.3846/13923730.2014.897989
  • 语种:English
  • 出版社:Vilnius Gediminas Technical University
  • 摘要:This study proposes an artificial intelligence (AI) model to predict the compressive strength and splitting tensile strength of rubberized concrete. This Evolutionary Multivariate Adaptive Regression Splines (EMARS) model is a hybrid of the Multivariate Adaptive Regression Splines (MARS) and Artificial Bee Colony (ABC) within which MARS addresses learning and curve fitting and ABC implements optimization to determine the fittest parameter settings with minimal prediction error. K-fold cross validation was utilized to compare EMARS performance against four other benchmark data mining techniques including MARS, Back-propagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), and Genetic Programming (GP). Comparison results showed EMARS to be the best model for predicting rubberized concrete strength and study results demonstrated EMARS as a reliable tool for civil engineers in the concrete construction industry.
国家哲学社会科学文献中心版权所有