首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Bayesian belief network-based project complexity measurement considering causal relationships
  • 本地全文:下载
  • 作者:Lan Luo ; Limao Zhang ; Guangdong Wu
  • 期刊名称:Journal of Civil Engineering and Management
  • 印刷版ISSN:1392-3730
  • 出版年度:2020
  • 卷号:26
  • 期号:2
  • DOI:10.3846/jcem.2020.11930
  • 语种:English
  • 出版社:Vilnius Gediminas Technical University
  • 摘要:This research proposes a Bayesian belief network-based approach to measure the project complexity in the construction industry. Firstly, project complexity nodes are identified for model development based on the literature review. Secondly, the project complexity measurement model is developed with 225 training samples and validated with 20 test samples. Thirdly, the developed measurement model is utilized to conduct model analytics for sequential decision making, which includes predictive, diagnostic, sensitivity, and influence chain analysis. Finally, EXPO 2010 is used to testify the effectiveness and applicability of the proposed approach. Results indicate that (1) more attention should be paid on technological complexity, information complexity, and task complexity in the process of complexity management; (2) the proposed measurement model can be applied into practice to predict the complexity level for a specific project. The uniqueness of this study lies in developing project complexity measurement model (PCMM) with the cause-effect relationships taken into account. This research contributes to (a) the state of knowledge by proposing a method that is capable of measuring the complexity level under what-if scenarios for complexity management, and (b) the state of practice by providing insights into a better understanding of causal relationships among influencing factors of complexity in construction projects.
国家哲学社会科学文献中心版权所有