摘要:Evolutionary plant breeding (EPB) is a breeding method that was used to create wheat (iTriticum aestivum/i L.)-evolving populations (EP), bi-parental and composite-cross populations (BPPs and CCPs), by using natural selection and bulking of seed to select the most adaptable, diverse population in an environment by increasing the frequency of favorable alleles in a heterogeneous population. This study used seven EPs to evaluate EPB in its ability to increase the performance of agronomic, quality, and disease resistance traits and adaptability across different precipitation zones. The populations were tested in field trials in three diverse locations over 2 years. Least significant differences showed the EPs performance was dependent on their pedigree and were statistically similar and even out-performed some of their respective parents in regards to grain yield, grain protein concentration, and disease resistance. Stability models including Eberhart and Russel’s deviation from Regression (), Shukla’s Stability Variance (), Wricke’s Ecovalance (), and the multivariate Additive Main Effects and Multiplicative Interaction (AMMI) model were used to evaluate the adaptability of the EPs and their parents. The BPPs and CCPs demonstrated significantly greater stability over the parents across precipitation zones, confirming the capacity of genetically diverse EP populations to adapt to different environments.