首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Analyzing Social-Geographic Human Mobility Patterns Using Large-Scale Social Media Data
  • 本地全文:下载
  • 作者:Zeinab Ebrahimpour ; Wanggen Wan ; José Luis Velázquez García
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2020
  • 卷号:9
  • 期号:2
  • 页码:125
  • DOI:10.3390/ijgi9020125
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Social media data analytics is the art of extracting valuable hidden insights from vast amounts of semi-structured and unstructured social media data to enable informed and insightful decision-making. Analysis of social media data has been applied for discovering patterns that may support urban planning decisions in smart cities. In this paper, Weibo social media data are used to analyze social-geographic human mobility in the CBD area of Shanghai to track citizen’s behavior. Our main motivation is to test the validity of geo-located Weibo data as a source for discovering human mobility and activity patterns. In addition, our goal is to identify important locations in people’s lives with the support of location-based services. The algorithms used are described and the results produced are presented using adequate visualization techniques to illustrate the detected human mobility patterns obtained by the large-scale social media data in order to support smart city planning decisions. The outcome of this research is helpful not only for city planners, but also for business developers who hope to extend their services to citizens.
国家哲学社会科学文献中心版权所有