首页    期刊浏览 2025年12月20日 星期六
登录注册

文章基本信息

  • 标题:Asymptotic Versus Bootstrap Inference for Inequality Indices of the Cumulative Distribution Function
  • 本地全文:下载
  • 作者:Ramses Abul Naga ; Christopher Stapenhurst ; Gaston Yalonetzky
  • 期刊名称:Econometrics
  • 印刷版ISSN:2225-1146
  • 出版年度:2020
  • 卷号:8
  • 期号:1
  • 页码:8
  • DOI:10.3390/econometrics8010008
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:We examine the performance of asymptotic inference as well as bootstrap tests for the Alphabeta and Kobus#8722;Miłoś family of inequality indices for ordered response data. We use Monte Carlo experiments to compare the empirical size and statistical power of asymptotic inference and the Studentized bootstrap test. In a broad variety of settings, both tests are found to have similar rejection probabilities of true null hypotheses, and similar power. Nonetheless, the asymptotic test remains correctly sized in the presence of certain types of severe class imbalances exhibiting very low or very high levels of inequality, whereas the bootstrap test becomes somewhat oversized in these extreme settings.
国家哲学社会科学文献中心版权所有