首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
  • 本地全文:下载
  • 作者:Alexander Litvinenko ; Ronald Kriemann ; Marc G. Genton
  • 期刊名称:MethodsX
  • 印刷版ISSN:2215-0161
  • 电子版ISSN:2215-0161
  • 出版年度:2020
  • 卷号:7
  • 页码:1-17
  • DOI:10.1016/j.mex.2019.07.001
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Graphical abstractDisplay OmittedAbstractWe provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to:•Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement.•Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity.•Identify unknown parameters of the covariance function (variance, smoothness, and covariance length).These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop.
  • 关键词:Parallel;Hierarchical matrices;Large datasets;Matérn covariance;Random fields;HLIBCov;HLIBpro;Cholesky;Matrix determinant;Parameter identification
国家哲学社会科学文献中心版权所有